Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 348: 119371, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37925980

RESUMO

The inevitable use of plastics in the existing standard of life makes its way to ecosystems, predominantly into the marine ecosystem. Recent research on energy recycling from marine discarded plastics through biological, chemical, and thermal processes is summarized, which degrade plastic debris and transform it into energy-efficient products. In a system-oriented approach, different boundaries like carbon efficiency, global warming potential, cumulative energy demand, and cost of the product have been evaluated. Even these technologies may successfully reduce the yearly volume of marine plastics by up to 89% while reducing greenhouse gas emissions by 30%. Conversely, recycling a ton of marine discarded plastics may save 915 cubic feet of landfill space, 6500 kWh of energy, and barrels of oil. Energy may be recovered up to 79% from waste plastics using various techniques. Up to 84% liquid fuel had been generated, with a maximum calorific power of 45 MJ/kg. It has been shown that in Asian countries, the power generation capacity of throw-away facemask wastes regularly varies from 2256 kWh/day to 18.52 million kWh/day. Hence, the conversion of marine plastics into biofuel, syngas, biochar, hydrocarbons, electricity, and value-added functional materials by various biotechnological and chemical processes like biodegradation, pyrolysis, gasification, methanolysis, and hydrolysis should be improvised as a source of alternative energy in the immediate future. Our review signifies the potential benefits of energy harvesting technologies from marine plastics pollutants to overcome the growing challenge of energy demands and provide a long-term solution to underdeveloped and developing countries as a sustainable source of energy. Endorsing current strategies to harvest energy from marine plastic wastes that enhance power generation technologies will help in building a more sustainable and greener environment that imparts a healthy and circular economy while shielding natural resources.


Assuntos
Poluentes Ambientais , Ecossistema , Plásticos , Instalações de Eliminação de Resíduos , Biocombustíveis
2.
Environ Toxicol Pharmacol ; 104: 104300, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37866414

RESUMO

Bisphenol S (BPS) is an incipient threat for reproductive health augmenting societal burden of infertility worldwide. In the present study, we investigated the mechanism of BPS induced testicular dysfunctions and protective actions of melatonin in mice. BPS (150 mg/kg BW) treatment reduced serum T3/T4, testosterone and elevated insulin levels along with adverse effect on thyroid and testicular histoarchitecture. Further, BPS treatment compromised sperm quality, reduced mRNA expression of steroidogenic (StAR/CYP11A1) markers, elevated oxidative load and disrupts metabolic status. However, melatonin (5 mg/kg BW) administration to BPS treated mice showed improved hormonal/histological parameters, enhanced thyroid hormone (TR-α/Dio-2)/melatonin (MT-1) receptor expressions. Further, melatonin treatment modulated the expression of testicular survival/redox (SIRT1/PGC-1α/FOXO-1, Nrf2/HO-1, p-JAK2/p-STAT3), proliferative (PCNA) and metabolic (IR/pAKT/GLUT-1) markers. Furthermore, melatonin treatment enhanced testicular antioxidant status and reduced caspase-3 expression. In conclusion, our results showed that BPS induces endocrine/oxidative and metabolic anomalies while melatonin improved male reproductive health.


Assuntos
Melatonina , Masculino , Camundongos , Animais , Melatonina/farmacologia , Sêmen/metabolismo , Testículo , Antioxidantes/farmacologia , Oxirredução , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/farmacologia , Estresse Oxidativo , Homeostase
3.
J Pineal Res ; 75(1): e12869, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37002642

RESUMO

Ever-increasing occurrence of plastic-manufacturing industries leads to environmental pollution that has been associated with declined human health and increased incidence of compromised reproductive health. Female subfertility/infertility is a complex phenomenon and environmental toxicants as well as lifestyle factors have a crucial role to play. Bisphenol S (BPS) was believed to be a "safer" replacement of bisphenol A (BPA) but recent data documented its neurotoxic, hepatotoxic, nephrotoxic, and reprotoxic attributes. Hence based on the scarcity of reports, we investigated molecular insights into BPS-induced ovarian dysfunction and protective actions of melatonin against it in adult golden hamsters, Mesocricetus auratus. Hamsters were administered with melatonin (3 mg/kg BW i.p. alternate days) and BPS (150 mg/kg BW orally every day) for 28 days. BPS treatment disrupted hypothalamo-pituitary-ovarian (HPO) axis as evident by reduced gonadotropins such as luteinizing hormone (LH) and follicle-stimulating hormone (FSH), ovarian steroids such as estradiol (E2) and progesterone (P4), thyroid hormones namely triiodothyronine (T3) and thyroxine (T4) and melatonin levels along with their respective receptors (ERα, TRα, and MT-1) thereby reducing ovarian folliculogenesis. BPS exposure also led to ovarian oxidative stress/inflammation by increasing reactive oxygen species and metabolic disturbances. However, melatonin supplementation to BPS restored ovarian folliculogenesis/steroidogenesis as indicated by increased number of growing follicles/corpora lutea and E2/P4 levels. Further, melatonin also stimulated key redox/survival markers such as silent information regulator of transcript-1 (SIRT-1), forkhead box O-1 (FOXO-1), nuclear factor E2-related factor-2 (Nrf2), and phosphoinositide 3-kinase/protein kinase B (PI3K/pAkt) expressions along with enhanced ovarian antioxidant capacity. Moreover, melatonin treatment reduced inflammatory load including ovarian nuclear factor kappa-B (NFĸB), cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) expressions, serum tumor necrosis factor α (TNFα), C-reactive protein (CRP) and nitrite-nitrate levels as well as upregulated ovarian insulin receptor (IR), glucose uptake transporter-4 (GLUT-4), connexin-43, and proliferating cell nuclear antigen (PCNA) expressions in ovary thereby ameliorating inflammatory and metabolic alterations due to BPS. In conclusion, we found severe deleterious impact of BPS on ovary while melatonin treatment protected ovarian physiology from these detrimental changes suggesting it to be a potential preemptive candidate against environmental toxicant-compromised female reproductive health.


Assuntos
Melatonina , Cricetinae , Animais , Humanos , Feminino , Mesocricetus , Melatonina/farmacologia , Fosfatidilinositol 3-Quinases , Fator 2 Relacionado a NF-E2 , Receptor de Insulina , Estradiol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...